IMAGES OF BIHOLOMORPHIC MAPPINGS OF STRICTLY PSEUDOCONVEX DOMAINS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Boundary Regularity of the Szegő Projection and Biholomorphic Mappings of Non-pseudoconvex Domains

It is shown that the Szegő projection S of a smoothly bounded domain Ω, not necessarily pseudoconvex, satisfies local regularity estimates at certain boundary points, provided that condition R holds for Ω. It is also shown that any biholomorphic mapping f : Ω → D between smoothly bounded domains extends smoothly near such points, provided that a weak regularity assumption holds for D. 1. Prelim...

متن کامل

Sobolev Space Projections in Strictly Pseudoconvex Domains

The orthogonal projection from a Sobolev space WS(Q) onto the subspace of holomorphic functions is studied. This analogue of the Bergman projection is shown to satisfy regularity estimates in higher Sobolev norms when ß is a smooth bounded strictly pseudoconvex domain in C". The Bergman projection P0: L2(ü) -» L2(S2) n {holomorphic functions}, where S2 c C" is a smooth bounded domain, has prove...

متن کامل

Scattering Theory for Strictly Pseudoconvex Domains

The spectral theory of a metric of Bergman type on a strictly pseudoconvex manifold is described and the scattering matrix is shown to be a pseudodifferential operator of Heisenberg type.

متن کامل

Hankel Operators and the Dixmier Trace on Strictly Pseudoconvex Domains

Generalizing earlier results for the disc and the ball, we give a formula for the Dixmier trace of the product of 2n Hankel operators on Bergman spaces of strictly pseudoconvex domains in C. The answer turns out to involve the dual Levi form evaluated on boundary derivatives of the symbols. Our main tool is the theory of generalized Toeplitz operators due to Boutet de Monvel and Guillemin. 2000...

متن کامل

Application of the Complex Monge-Ampère Equation to the Study of Proper Holomorphic Mappings of Strictly Pseudoconvex Domains

We construct a special plurisubharmonic defining function for a smoothly bounded strictly pseudoconvex domain so that the determinant of the complex Hessian vanishes to high order on the boundary. This construction, coupled with regularity of solutions of complex Monge-Ampére equation and the reflection principle, enables us to give a new proof of the Fefferman mapping theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics

سال: 1984

ISSN: 0373-6385

DOI: 10.2206/kyushumfs.38.121